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Administrative

• Website: cars.mit.edu

• Contact Email: deepcars@mit.edu

• Required: 
• Create an account on the website.

• Follow the tutorial for each of the 2 projects.

• Recommended:
• Ask questions

• Win competition!

• Office hours: Friday, 5-7pm

(more info coming soon)

http://cars.mit.edu/
mailto:deepcars@mit.edu
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DeepTraffic Leaderboard
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Illustrative Case Study: Traffic Light Detection
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DeepTesla: End-to-End Learning from Human and Autopilot Driving
(in ConvnetJS)
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DeepTesla: End-to-End Learning from Human and Autopilot Driving
(in TensorFlow)
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Supervised 

Learning

Unsupervised 

Learning

Semi-Supervised

Learning

Reinforcement

Learning

Standard supervised learning pipeline:

Computer Vision is Machine Learning

References: [81]

Computer Vision
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Images are Numbers

References: [89]

• Regression: The output variable takes continuous values

• Classification: The output variable takes class labels

• Underneath it may still produce continuous values such as 

probability of belonging to a particular class.
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Computer Vision is Hard

References: [66, 69, 89]
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Image Classification Pipeline

References: [81, 89]
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Famous Computer Vision Datasets

References: [90, 91, 92, 93]

MNIST: handwritten digits ImageNet: WordNet hierarchy

CIFAR-10(0): tiny images Places: natural scenes
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Let’s Build an Image Classifier for CIFAR-10

References: [89, 91]
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Let’s Build an Image Classifier for CIFAR-10

References: [89, 91]

Accuracy
Random: 10%
Our image-diff (with L1): 38.6%
Our image-diff (with L2): 35.4%
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K-Nearest Neighbors: Generalizing the Image-Diff Classifier

References: [89]

Tuning (hyper)parameters:
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K-Nearest Neighbors: Generalizing the Image-Diff Classifier

References: [89, 94]

Accuracy
Random: 10%
Training and testing on the same data: 35.4%
7-Nearest Neighbors: ~30%
Human: ~94%
…
Convolutional Neural Networks: ~95%
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Reminder: Weighing the Evidence

References: [78]
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Reminder: Classify and Image of a Number

References: [80]

Input:
(28x28)

Network:
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Reminder: “Learning” is Optimization of a Function

References: [63, 80]

Ground truth for “6”:

“Loss” function:
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Convolutional Neural Networks

References: [95]

Regular neural network (fully connected):

Convolutional neural network:

Each layer takes a 3d volume, produces 3d volume with some 

smooth function that may or may not have parameters.
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Convolutional Neural Networks: Layers

• INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and 

with three color channels R,G,B.

• CONV layer will compute the output of neurons that are connected to local regions in the input, each computing 

a dot product between their weights and a small region they are connected to in the input volume. This may 

result in volume such as [32x32x12] if we decided to use 12 filters.

• RELU layer will apply an elementwise activation function, such as the max(0,x) thresholding at zero. This leaves 

the size of the volume unchanged ([32x32x12]).

• POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in 

volume such as [16x16x12].

• FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of 

the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary 

Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the 

previous volume.

References: [95]
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Dealing with Images: Local Connectivity

Same neuron. Just more focused (narrow “receptive field”).

The parameters on a each filter are spatially “shared”
(if a feature is useful in one place, it’s useful elsewhere)

References: [95]
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ConvNets: Spatial Arrangement of Output Volume

• Depth: number of filters

• Stride: filter step size (when we “slide” it)
• Padding: zero-pad the input

References: [95]
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ConvNets: Pooling

References: [95]
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Computer Vision:

Object Recognition / Classification

References: [4]
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Original Ground Truth FCN-8

Computer Vision:

Segmentation

References: [96]
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Computer Vision:

Object Detection

References: [97]
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How Can Convolutional Neural Networks Help Us Drive?
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Driving: The Numbers
(in United States, in 2014)

• All drivers: 10,658 miles

(29.2 miles per day)

• Rural drivers: 12,264 miles

• Urban drivers: 9,709 miles

• Fatal crashes: 29,989

• All fatalities: 32,675

• Car occupants: 12,507

• SUV occupants: 8,320

• Pedestrians: 4,884

• Motorcycle: 4,295

• Bicyclists: 720

• Large trucks: 587

Miles Fatalities
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Cars We Drive
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Human at the Center of Automation:

The Way to Full Autonomy Includes the Human

Ford F150 Tesla Model S Google Self-Driving Car

Fully
Human

Controlled

Fully
Machine

Controlled
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Human at the Center of Automation:

The Way to Full Autonomy Includes the Human

• Emergency
• Automatic emergency breaking (AEB)

• Warnings
• Lane departure warning (LDW)

• Forward collision warning (FCW)

• Blind spot detection

• Longitudinal
• Adaptive cruise control (ACC)

• Lateral
• Lane keep assist (LKA)

• Automatic steering

• Control and Planning
• Automatic lane change

• Automatic parking

Tesla Autopilot
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Distracted Humans

• Injuries and fatalities:
3,179 people were killed and 431,000 were 

injured in motor vehicle crashes involving 

distracted drivers

(in 2014)

• Texts:
169.3 billion text messages were sent in the 

US every month.

(as of December 2014)

• Eye off road:
5 seconds is the average time your eyes are 

off the road while texting. When traveling 

at 55mph, that's enough time to cover the 

length of a football field blindfolded.

What is distracted driving?
• Texting

• Using a smartphone

• Eating and drinking

• Talking to passengers

• Grooming

• Reading, including maps

• Using a navigation system

• Watching a video

• Adjusting a radio
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4 D’s of Being Human:
Drunk, Drugged, Distracted, Drowsy

• Drunk Driving: In 2014, 31 percent of traffic fatalities 

involved a drunk driver.

• Drugged Driving: 23% of night-time drivers tested positive 

for illegal, prescription or over-the-counter medications.

• Distracted Driving: In 2014, 3,179 people (10 percent of 

overall traffic fatalities) were killed in crashes involving 

distracted drivers.

• Drowsy Driving: In 2014, nearly three percent of all traffic 

fatalities involved a drowsy driver, and at least 846 people 

were killed in crashes involving a drowsy driver.
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In Context: Traffic Fatalities

Total miles driven in U.S. in 2014:

3,000,000,000,000 (3 million million)

Fatalities: 32,675
(1 in 90 million)

Tesla Autopilot miles driven since October 2015:

300,000,000 (300 million)

(as of December 2016)

Fatalities: 1
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In Context: Traffic Fatalities

Total miles driven in U.S. in 2014:

3,000,000,000,000 (3 million million)

Fatalities: 32,675
(1 in 90 million)

Tesla Autopilot miles driven since October 2015:

300,000,000 (300 million)

Fatalities: 1

We (increasingly) understand this

We do not understand this (yet)

We need A LOT of real-world semi-autonomous driving data!

Computer Vision + Machine Learning + Big Data = Understanding
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The Data

Teslas instrumented: 17

Hours of data: 5,000+ hours

Distance traveled: 70,000+ miles
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The Data
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Camera and Lens Selection

Fisheye: Capture full range of head, body 

movement inside vehicle.

2.8-12mm Focal Length: “Zoom” on the face 
without obstructing the driver’s view.

Logitech C920:
On-board H264 Compression

Case for C-Mount Lens:
Flexibility in lens selection
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Semi-Autonomous Vehicle Components

External

1. Radar

2. Visible-light camera

3. LIDAR

4. Infrared camera

5. Stereo vision

6. GPS/IMU

7. CAN

8. Audio

Internal

1. Visible-light camera

2. Infrared camera

3. Audio
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Self-Driving Car Tasks

• Localization and Mapping:
Where am I?

• Scene Understanding:
Where is everyone else?

• Movement Planning:
How do I get from A to B?

• Driver State:
What’s the driver up to?
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Self-Driving Car Tasks

• Localization and Mapping:
Where am I?

• Scene Understanding:
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• Movement Planning:
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Visual Odometry

• 6-DOF: freed of movement

• Changes in position:

• Forward/backward: surge

• Left/right: sway

• Up/down: heave

• Orientation:

• Pitch, Yaw, Roll

• Source: 

• Monocular: I moved 1 unit

• Stereo: I moved 1 meter

• Mono = Stereo for far away objects

• PS: For tiny robots everything is “far away” relative to inter-camera 

distance
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SLAM: Simultaneous Localization and Mapping
What works: SIFT and optical flow

References: [98, 99]
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Visual Odometry in Parts

• (Stereo) Undistortion, Rectification

• (Stereo) Disparity Map Computation

• Feature Detection (e.g., SIFT, FAST)

• Feature Tracking (e.g., KLT: Kanade-Lucas-Tomasi)

• Trajectory Estimation

• Use rigid parts of the scene (requires outlier/inlier detection)

• For mono, need more info* like camera orientation and height of 

off the ground

* Kitt, Bernd Manfred, et al. "Monocular visual odometry using a planar road model to solve scale ambiguity." (2011).
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End-to-End Visual Odometry

Konda, Kishore, and Roland Memisevic. "Learning visual odometry with a convolutional 

network." International Conference on Computer Vision Theory and Applications. 2015.
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Self-Driving Car Tasks

• Localization and Mapping:
Where am I?

• Scene Understanding:
Where is everyone else?

• Movement Planning:
How do I get from A to B?

• Driver State:
What’s the driver up to?
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Object Detection

• Past approaches: cascades classifiers (Haar-like features)

• Where deep learning can help:

recognition, classification, detection 
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Full Driving Scene Segmentation

Fully Convolutional Network implementation: 

https://github.com/tkuanlun350/Tensorflow-SegNet

https://github.com/tkuanlun350/Tensorflow-SegNet
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Road Texture and Condition from Audio
(with Recurrent Neural Networks)
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Self-Driving Car Tasks

• Localization and Mapping:
Where am I?

• Scene Understanding:
Where is everyone else?

• Movement Planning:
How do I get from A to B?

• Driver State:
What’s the driver up to?
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• Previous approaches: optimization-based control

• Where deep learning can help: reinforcement learning

Deep Reinforcement Learning implementation:
https://github.com/nivwusquorum/tensorflow-deepq

https://github.com/nivwusquorum/tensorflow-deepq
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Self-Driving Car Tasks

• Localization:
Where am I?

• Object detection:
Where is everyone else?

• Movement planning:
How do I get from A to B?

• Driver state:
What’s the driver up to?
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Drive State Detection:

A Multi-Resolutional View

Gaze

Classification

Blink

Rate

Blink

Duration

Head

Pose

Eye

Pose

Pupil

Diameter

Micro

Saccades

Increasing level of detection resolution and difficulty 

Body

Pose

Blink

Dynamics

Micro

Glances

Cognitive

Load
Drowsiness
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Gaze Region and Autopilot State
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Driver Emotion
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If Driving is a Conversation, this is an

End-to-End Natural Language Generation

1. Natural language processing to enable 

it to communicate successfully

2. Knowledge representation to store 

information provided before or during 

the interrogation

3. Automated reasoning to use the stored 

information to answer questions and to 

draw new conclusions

Turing Test:
Can a computer be mistaken for a 

human more than 30% of the time?
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Autonomous Driving: End-to-End

Magic
Happens



Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Stairway to Automation

Ford F150

Tesla Model S

Google Self-Driving Car

Training Dataset

Testing Dataset
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Autonomous Driving: End-to-End
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Autonomous Driving: End-to-End
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Autonomous Driving: End-to-End

• 9 layers

• 1 normalization layer

• 5 convolutional layers

• 3 fully connected layers

• 27 million connections

• 250 thousand parameters
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End-to-End Driving with ConvnetJS

Tutorial on http://cars.mit.edu/deeptesla

http://cars.mit.edu/deeptesla
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End-to-end Steering

• By the end of this lecture, you’ll be able to train a model 
that can steer a vehicle

• Our input to our network will be a single image of the 

forward roadway from a Tesla

• Our output will be a steering wheel value between -20 and 

20
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Creating the Dataset

• We recorded and extracted 10 video clips of highway driving 

from a Tesla

• The wheel value was extracted from the in-vehicle CAN

• We cropped/extracted a window from each video frame and 

provide a CSV linking the window to a wheel value
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Lighting and Road Conditions
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ConvNetJS Overview

• ConvNetJS is a Javascript

implementation for using 

and training neural 

networks within the 

browser

• It supports simple networks 

with several different layer 

types and training 

algorithms

• Constructing and training a 

network can be performed 

in very few lines of code, 

great for demonstrations
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ConvNetJS – Neural Network Representation

• The network is represented 

by a single Javascript object 

which contains a list of 

layers

• Each layer contains a plain 

array of weights (w), the 

activation/activation 

gradients of the last 

forward pass, as well as the 

shape and layer type
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Layer Types

• ConvNetJS implements several different layer types: 

convolutional, pooling, fully-connected, local contrast 

normalization, and loss layers

• There are three available output types: regression, softmax, 

and SVM
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ConvNetJS – Training Overview

• To train a network, you first must 

initialize a “Trainer” object
• var trainer = new 

convnetjs.SGDTrainer(net, { 

method: ‘adadelta’, batch_size: 

1, l2_decay: 0.0001});

• There are three training algorithms 

available: SGD, Adadelta, and 

Adagrad.

• Training is performed by manually 

calling trainer.train(input_volume, 

expected_output)

• Returns an object containing timing 

and loss function information
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DeepTesla Overview
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Model Metrics
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Network Designer
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Training Interaction
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Layer Visualization



Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Input Layer
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Convolutional Layer Visualization
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Video Visualization
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Information Bar
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Input Box
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Barcodes

• 17 bit, sign-magnitude

• Encoded into actual video

• 0 = black, 1 = white

• Frame on top, wheel on 

bottom (divided by two)
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Image Batches

• Each image loaded of the 

network contains an entire 

batch

• There is one image per row, 

and 250 rows in total

• These images are 

reassembled into volumes 

upon download
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Training Explanation

• One web worker used for loading examples

• Each batch of training images is one large image with each row as a 

single training example

• After an image finishes loading asynchronously, sends the training 

examples to another worker

• One web worker used for training network

• Train on each image and push the network/outputs to visualization 

worker

• One web worker used for visualization

• For a specified training example interval, blit the activation/gradient 

output of each training example onto a canvas

• Each web worker behaves as a single thread, and we use 

message passing to communicate state between the 

workers
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ConvNetJS Evaluation - Video Explanation

• The videos are encoded as 1280x820 in H264/MKV with 17 

bit sign-magnitude barcodes

• The video main video frame is stored in the box (0, 1280, 0, 

720)

• The frame barcode is in box (1144, 720, 1280, 770)

• The wheel value barcode is in box (1144, 770, 1280, 820)
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ConvNetJS Evaluation - Creating the Video

• Each epoch is synchronized to 30 fps

• We extract the wheel value from the CAN data and 

synchronize each message to a frame (both the frame and 

the CAN message are timestamped)

• Using OpenCV, we process the data

• Generate a bar code for the frame containing the wheel data

• Crop the image portion used for training

• Create single images containing batches of training data

• The epochs and associated data are copied to our web 

server which serves 
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ConvNetJS Evaluation - Playing the Video

• To be able to use the video in the neural network, we need 

to do some preprocessing

• First, we have a hidden video element and rely on modern 

HTML5 video implementations

• When the user requests the video to play, we begin tracking 

each redraw of the page

• With each redraw, we grab the currently rendered video 

frame, extract the RGBA values and blit them to two 

different canvases: one canvas, which the user sees, and 

another canvas which is hidden and only contains a cropped 

portion of the frame (the part we will use for the neural 

network)
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ConvNetJS Evaluation - Playing the Video

• Next, we read the image data from the hidden canvas and 

shape it into a ConvNetJS volume

• For each image we first create a volume:

• var image_vol = new convnetjs.Vol(x_size, y_size, depth, 

default_value)

• Next, we extract each pixel from the canvas and set the 

equivalent voxel (volume pixel) to the value (skipping the 

alpha value)

• We can also extract the expected steer value by parsing the 

barcode (a 17 bit, signed-magnitude barcode, where white = 

1, black = 0)
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ConvNetJS Evaluation - Forward Pass

• Now we can use our extracted volume in the forward pass 

by calling net.forward(our_volume)

• The predicted value is stored in the output neuron:

• var prediction = net.forward(vol);

• var raw_regression_value = prediction.w[0];

• Because we min-max normalized our inputs while training 

the network, we need to transform our outputs – this is just 

the reverse transformation we performed on input:

• Wheel value = (raw_regression_value * total_wheel_range) –
wheel_min

• We visualize the predicted and actual steering wheel values 

and calculate the error
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End-to-End Driving with ConvnetJS

Tutorial on http://cars.mit.edu/deeptesla

http://cars.mit.edu/deeptesla
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End-to-End Driving with TensorFlow

Available on http://github.com/lexfridman/deeptesla

http://github.com/lexfridman/deeptesla
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Build the Model: Input and Output

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

def conv2d(x, W, stride):
return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], 

padding='VALID')

x = tf.placeholder(tf.float32, shape=[None, 66, 200, 3])
y_ = tf.placeholder(tf.float32, shape=[None, 1])

x_image = x
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Build the Model: Convolutional Layers

#first convolutional layer
W_conv1 = weight_variable([5, 5, 3, 24])
b_conv1 = bias_variable([24])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1, 2) + b_conv1)

#second convolutional layer
W_conv2 = weight_variable([5, 5, 24, 36])
b_conv2 = bias_variable([36])

h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2, 2) + b_conv2)

#third convolutional layer
W_conv3 = weight_variable([5, 5, 36, 48])
b_conv3 = bias_variable([48])

h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3, 2) + b_conv3)

#fourth convolutional layer
W_conv4 = weight_variable([3, 3, 48, 64])
b_conv4 = bias_variable([64])

h_conv4 = tf.nn.relu(conv2d(h_conv3, W_conv4, 1) + b_conv4)

#fifth convolutional layer
W_conv5 = weight_variable([3, 3, 64, 64])
b_conv5 = bias_variable([64])

h_conv5 = tf.nn.relu(conv2d(h_conv4, W_conv5, 1) + b_conv5)
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Build the Model: Fully Connected Layers

# fully connected layer 1
W_fc1 = weight_variable([1152, 1164])
b_fc1 = bias_variable([1164])

h_conv5_flat = tf.reshape(h_conv5, [-1, 1152])
h_fc1 = tf.nn.relu(tf.matmul(h_conv5_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# fully connected layer 2
W_fc2 = weight_variable([1164, 100])
b_fc2 = bias_variable([100])

h_fc2 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)

# fully connected layer 3
W_fc3 = weight_variable([100, 50])
b_fc3 = bias_variable([50])

h_fc3 = tf.nn.relu(tf.matmul(h_fc2_drop, W_fc3) + b_fc3)

h_fc3_drop = tf.nn.dropout(h_fc3, keep_prob)

# fully connected layer 4
W_fc4 = weight_variable([50, 10])
b_fc4 = bias_variable([10])

h_fc4 = tf.nn.relu(tf.matmul(h_fc3_drop, W_fc4) + b_fc4)

h_fc4_drop = tf.nn.dropout(h_fc4, keep_prob)

#Output
W_fc5 = weight_variable([10, 1])
b_fc5 = bias_variable([1])

y = tf.mul(tf.atan(tf.matmul(h_fc4_drop, W_fc5) + b_fc5), 2)
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Train the Model

sess = tf.InteractiveSession()

loss = tf.reduce_mean(tf.square(tf.sub(model.y_, model.y)))
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
sess.run(tf.initialize_all_variables())

saver = tf.train.Saver()

for i in range(int(driving_data.num_images * 0.3)):
xs, ys = driving_data.LoadTrainBatch(100)
train_step.run(feed_dict={model.x: xs, model.y_: ys, model.keep_prob: 0.8})
if i % 10 == 0:

xs, ys = driving_data.LoadValBatch(100)
print("step %d, val loss %g"%(i, loss.eval(feed_dict={

model.x:xs, model.y_: ys, model.keep_prob: 1.0})))
if i % 100 == 0:

if not os.path.exists(LOGDIR):
os.makedirs(LOGDIR)

checkpoint_path = os.path.join(LOGDIR, "model.ckpt")
filename = saver.save(sess, checkpoint_path)
print("Model saved in file: %s" % filename)
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Run the Model

import tensorflow as tf
import scipy.misc
import model
import cv2

sess = tf.InteractiveSession()
saver = tf.train.Saver()
saver.restore(sess, "save/model.ckpt")

img = cv2.imread('steering_wheel_image.jpg',0)
rows,cols = img.shape

smoothed_angle = 0

cap = cv2.VideoCapture(0)
while(cv2.waitKey(10) != ord('q')):

ret, frame = cap.read()
image = scipy.misc.imresize(frame, [66, 200]) / 255.0
degrees = model.y.eval(feed_dict={model.x: [image], model.keep_prob: 

1.0})[0][0] \
* 180 / scipy.pi

cv2.imshow('frame', frame)
smoothed_angle += 0.2 * pow(abs((degrees - smoothed_angle)), 2.0 / 3.0) * \

(degrees - smoothed_angle) / abs(degrees - smoothed_angle)
M = cv2.getRotationMatrix2D((cols/2,rows/2),-smoothed_angle,1)
dst = cv2.warpAffine(img,M,(cols,rows))
cv2.imshow("steering wheel", dst)

cap.release()
cv2.destroyAllWindows()
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End-to-End Driving with TensorFlow

Available on http://github.com/lexfridman/deeptesla

http://github.com/lexfridman/deeptesla
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TrafficLight Classification with TensorFlow

We will be implementing a simple traffic light classifier, with 3 classes (red, green, yellow)
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Parameters

• Max epochs: the number of 

times the neural network 

will see all training 

examples

• Input_img_x/y: the size we 

will use for inputs into the 

the network

• Batch size: # of examples 

the neural network will see 

before making a gradient 

step
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Helper Functions

We use some helper functions to make adding layers 

easier/more consistent
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Model Input/Output

• We specify our input and output types in the same lines to 

make sure they agree with our idea of the network

• Our input is an image of sized 32x32x3 (RGB channels)

• Our output consists of 3 neurons, representing the 

probability of each class
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Convolutional Layer

• Here we specify our first convolutional layer using our helper 

function

• W_conv1 – a 4D tensor representing the weights [filter_x, 

filter_y, previous layer neurons, # of filters]

• b_conv1 – our simple addition variable

• h_conv1 – our actual layer/activation
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Pooling Layer
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Flattening Pool Layer

We calculate the total number of neurons needed in our first fully-connected

layer by multiplying all the dimensions of the pool layer shape
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Output Layer
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Loss and Optimizer

• Our loss function performs softmax and then computes 

cross-entropy

• We use the AdamOptimizer and specify a learning rate
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Saver Object
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Loading Images

• Iterate over each image, resize to 32x32

• Create a one hot encoding of our class

• Shuffle the entire dataset
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Splitting the Dataset

• Split our data set into train and test

• We truncate our sets to a multiple of batch size (all batches 

have to be the same size)
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Training Loop

• Iterate over each batch and train on it

• (we assume training examples are a multiple of the batch size)



Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Best Model

• We evaluate the loss on all of our training examples and test 

examples

• If the validation loss is lower than the lowest loss, we save our 

model
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Expected Output
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TrafficLight Classification with TensorFlow

We will be implementing a simple traffic light classifier, with 3 classes (red, green, yellow)
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https://goo.gl/9Xhp2t

https://goo.gl/9Xhp2t

