
Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

6.S094: Deep Learning for Self-Driving Cars

Learning to Drive: Convolutional Neural Networks
and End-to-End Learning of the Full Driving Tasks

cars.mit.edu

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Administrative

• Website: cars.mit.edu

• Contact Email: deepcars@mit.edu

• Required:
• Create an account on the website.

• Follow the tutorial for each of the 2 projects.

• Recommended:
• Ask questions

• Win competition!

• Office hours: Friday, 5-7pm

(more info coming soon)

http://cars.mit.edu/
mailto:deepcars@mit.edu

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Administrative

• Website: cars.mit.edu

• Contact Email: deepcars@mit.edu

• Required:
• Create an account on the website.

• Follow the tutorial for each of the 2 projects.

• Recommended:
• Ask questions

• Win competition!

http://cars.mit.edu/
mailto:deepcars@mit.edu

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Schedule

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

DeepTraffic Leaderboard

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Illustrative Case Study: Traffic Light Detection

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

DeepTesla: End-to-End Learning from Human and Autopilot Driving
(in ConvnetJS)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

DeepTesla: End-to-End Learning from Human and Autopilot Driving
(in TensorFlow)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Supervised

Learning

Unsupervised

Learning

Semi-Supervised

Learning

Reinforcement

Learning

Standard supervised learning pipeline:

Computer Vision is Machine Learning

References: [81]

Computer Vision

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Images are Numbers

References: [89]

• Regression: The output variable takes continuous values

• Classification: The output variable takes class labels

• Underneath it may still produce continuous values such as

probability of belonging to a particular class.

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Computer Vision is Hard

References: [66, 69, 89]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Image Classification Pipeline

References: [81, 89]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Famous Computer Vision Datasets

References: [90, 91, 92, 93]

MNIST: handwritten digits ImageNet: WordNet hierarchy

CIFAR-10(0): tiny images Places: natural scenes

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Let’s Build an Image Classifier for CIFAR-10

References: [89, 91]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Let’s Build an Image Classifier for CIFAR-10

References: [89, 91]

Accuracy
Random: 10%
Our image-diff (with L1): 38.6%
Our image-diff (with L2): 35.4%

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

K-Nearest Neighbors: Generalizing the Image-Diff Classifier

References: [89]

Tuning (hyper)parameters:

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

K-Nearest Neighbors: Generalizing the Image-Diff Classifier

References: [89, 94]

Accuracy
Random: 10%
Training and testing on the same data: 35.4%
7-Nearest Neighbors: ~30%
Human: ~94%
…
Convolutional Neural Networks: ~95%

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Reminder: Weighing the Evidence

References: [78]

E
v
id

e
n

c
e

D
e

c
is

io
n

s

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Reminder: Classify and Image of a Number

References: [80]

Input:
(28x28)

Network:

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Reminder: “Learning” is Optimization of a Function

References: [63, 80]

Ground truth for “6”:

“Loss” function:

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Convolutional Neural Networks

References: [95]

Regular neural network (fully connected):

Convolutional neural network:

Each layer takes a 3d volume, produces 3d volume with some

smooth function that may or may not have parameters.

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Convolutional Neural Networks: Layers

• INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and

with three color channels R,G,B.

• CONV layer will compute the output of neurons that are connected to local regions in the input, each computing

a dot product between their weights and a small region they are connected to in the input volume. This may

result in volume such as [32x32x12] if we decided to use 12 filters.

• RELU layer will apply an elementwise activation function, such as the max(0,x) thresholding at zero. This leaves

the size of the volume unchanged ([32x32x12]).

• POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in

volume such as [16x16x12].

• FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of

the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary

Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the

previous volume.

References: [95]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Dealing with Images: Local Connectivity

Same neuron. Just more focused (narrow “receptive field”).

The parameters on a each filter are spatially “shared”
(if a feature is useful in one place, it’s useful elsewhere)

References: [95]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNets: Spatial Arrangement of Output Volume

• Depth: number of filters

• Stride: filter step size (when we “slide” it)
• Padding: zero-pad the input

References: [95]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving CarsReferences: [95]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNets: Pooling

References: [95]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Computer Vision:

Object Recognition / Classification

References: [4]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Original Ground Truth FCN-8

Computer Vision:

Segmentation

References: [96]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Computer Vision:

Object Detection

References: [97]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

How Can Convolutional Neural Networks Help Us Drive?

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Driving: The Numbers
(in United States, in 2014)

• All drivers: 10,658 miles

(29.2 miles per day)

• Rural drivers: 12,264 miles

• Urban drivers: 9,709 miles

• Fatal crashes: 29,989

• All fatalities: 32,675

• Car occupants: 12,507

• SUV occupants: 8,320

• Pedestrians: 4,884

• Motorcycle: 4,295

• Bicyclists: 720

• Large trucks: 587

Miles Fatalities

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Cars We Drive

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Human at the Center of Automation:

The Way to Full Autonomy Includes the Human

Ford F150 Tesla Model S Google Self-Driving Car

Fully
Human

Controlled

Fully
Machine

Controlled

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Human at the Center of Automation:

The Way to Full Autonomy Includes the Human

• Emergency
• Automatic emergency breaking (AEB)

• Warnings
• Lane departure warning (LDW)

• Forward collision warning (FCW)

• Blind spot detection

• Longitudinal
• Adaptive cruise control (ACC)

• Lateral
• Lane keep assist (LKA)

• Automatic steering

• Control and Planning
• Automatic lane change

• Automatic parking

Tesla Autopilot

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Distracted Humans

• Injuries and fatalities:
3,179 people were killed and 431,000 were

injured in motor vehicle crashes involving

distracted drivers

(in 2014)

• Texts:
169.3 billion text messages were sent in the

US every month.

(as of December 2014)

• Eye off road:
5 seconds is the average time your eyes are

off the road while texting. When traveling

at 55mph, that's enough time to cover the

length of a football field blindfolded.

What is distracted driving?
• Texting

• Using a smartphone

• Eating and drinking

• Talking to passengers

• Grooming

• Reading, including maps

• Using a navigation system

• Watching a video

• Adjusting a radio

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

4 D’s of Being Human:
Drunk, Drugged, Distracted, Drowsy

• Drunk Driving: In 2014, 31 percent of traffic fatalities

involved a drunk driver.

• Drugged Driving: 23% of night-time drivers tested positive

for illegal, prescription or over-the-counter medications.

• Distracted Driving: In 2014, 3,179 people (10 percent of

overall traffic fatalities) were killed in crashes involving

distracted drivers.

• Drowsy Driving: In 2014, nearly three percent of all traffic

fatalities involved a drowsy driver, and at least 846 people

were killed in crashes involving a drowsy driver.

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

In Context: Traffic Fatalities

Total miles driven in U.S. in 2014:

3,000,000,000,000 (3 million million)

Fatalities: 32,675
(1 in 90 million)

Tesla Autopilot miles driven since October 2015:

300,000,000 (300 million)

(as of December 2016)

Fatalities: 1

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

In Context: Traffic Fatalities

Total miles driven in U.S. in 2014:

3,000,000,000,000 (3 million million)

Fatalities: 32,675
(1 in 90 million)

Tesla Autopilot miles driven since October 2015:

300,000,000 (300 million)

Fatalities: 1

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

In Context: Traffic Fatalities

Total miles driven in U.S. in 2014:

3,000,000,000,000 (3 million million)

Fatalities: 32,675
(1 in 90 million)

Tesla Autopilot miles driven since October 2015:

300,000,000 (300 million)

Fatalities: 1

We (increasingly) understand this

We do not understand this (yet)

We need A LOT of real-world semi-autonomous driving data!

Computer Vision + Machine Learning + Big Data = Understanding

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

The Data

Teslas instrumented: 17

Hours of data: 5,000+ hours

Distance traveled: 70,000+ miles

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

The Data

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Camera and Lens Selection

Fisheye: Capture full range of head, body

movement inside vehicle.

2.8-12mm Focal Length: “Zoom” on the face
without obstructing the driver’s view.

Logitech C920:
On-board H264 Compression

Case for C-Mount Lens:
Flexibility in lens selection

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Semi-Autonomous Vehicle Components

External

1. Radar

2. Visible-light camera

3. LIDAR

4. Infrared camera

5. Stereo vision

6. GPS/IMU

7. CAN

8. Audio

Internal

1. Visible-light camera

2. Infrared camera

3. Audio

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Self-Driving Car Tasks

• Localization and Mapping:
Where am I?

• Scene Understanding:
Where is everyone else?

• Movement Planning:
How do I get from A to B?

• Driver State:
What’s the driver up to?

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Self-Driving Car Tasks

• Localization and Mapping:
Where am I?

• Scene Understanding:
Where is everyone else?

• Movement Planning:
How do I get from A to B?

• Driver State:
What’s the driver up to?

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Visual Odometry

• 6-DOF: freed of movement

• Changes in position:

• Forward/backward: surge

• Left/right: sway

• Up/down: heave

• Orientation:

• Pitch, Yaw, Roll

• Source:

• Monocular: I moved 1 unit

• Stereo: I moved 1 meter

• Mono = Stereo for far away objects

• PS: For tiny robots everything is “far away” relative to inter-camera

distance

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

SLAM: Simultaneous Localization and Mapping
What works: SIFT and optical flow

References: [98, 99]

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Visual Odometry in Parts

• (Stereo) Undistortion, Rectification

• (Stereo) Disparity Map Computation

• Feature Detection (e.g., SIFT, FAST)

• Feature Tracking (e.g., KLT: Kanade-Lucas-Tomasi)

• Trajectory Estimation

• Use rigid parts of the scene (requires outlier/inlier detection)

• For mono, need more info* like camera orientation and height of

off the ground

* Kitt, Bernd Manfred, et al. "Monocular visual odometry using a planar road model to solve scale ambiguity." (2011).

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

End-to-End Visual Odometry

Konda, Kishore, and Roland Memisevic. "Learning visual odometry with a convolutional

network." International Conference on Computer Vision Theory and Applications. 2015.

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Self-Driving Car Tasks

• Localization and Mapping:
Where am I?

• Scene Understanding:
Where is everyone else?

• Movement Planning:
How do I get from A to B?

• Driver State:
What’s the driver up to?

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Object Detection

• Past approaches: cascades classifiers (Haar-like features)

• Where deep learning can help:

recognition, classification, detection

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Full Driving Scene Segmentation

Fully Convolutional Network implementation:

https://github.com/tkuanlun350/Tensorflow-SegNet

https://github.com/tkuanlun350/Tensorflow-SegNet

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Road Texture and Condition from Audio
(with Recurrent Neural Networks)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Self-Driving Car Tasks

• Localization and Mapping:
Where am I?

• Scene Understanding:
Where is everyone else?

• Movement Planning:
How do I get from A to B?

• Driver State:
What’s the driver up to?

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

• Previous approaches: optimization-based control

• Where deep learning can help: reinforcement learning

Deep Reinforcement Learning implementation:
https://github.com/nivwusquorum/tensorflow-deepq

https://github.com/nivwusquorum/tensorflow-deepq

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Self-Driving Car Tasks

• Localization:
Where am I?

• Object detection:
Where is everyone else?

• Movement planning:
How do I get from A to B?

• Driver state:
What’s the driver up to?

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Drive State Detection:

A Multi-Resolutional View

Gaze

Classification

Blink

Rate

Blink

Duration

Head

Pose

Eye

Pose

Pupil

Diameter

Micro

Saccades

Increasing level of detection resolution and difficulty

Body

Pose

Blink

Dynamics

Micro

Glances

Cognitive

Load
Drowsiness

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Gaze Region and Autopilot State

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Driver Emotion

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

If Driving is a Conversation, this is an

End-to-End Natural Language Generation

1. Natural language processing to enable

it to communicate successfully

2. Knowledge representation to store

information provided before or during

the interrogation

3. Automated reasoning to use the stored

information to answer questions and to

draw new conclusions

Turing Test:
Can a computer be mistaken for a

human more than 30% of the time?

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Autonomous Driving: End-to-End

Magic
Happens

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Stairway to Automation

Ford F150

Tesla Model S

Google Self-Driving Car

Training Dataset

Testing Dataset

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Autonomous Driving: End-to-End

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Autonomous Driving: End-to-End

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Autonomous Driving: End-to-End

• 9 layers

• 1 normalization layer

• 5 convolutional layers

• 3 fully connected layers

• 27 million connections

• 250 thousand parameters

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

End-to-End Driving with ConvnetJS

Tutorial on http://cars.mit.edu/deeptesla

http://cars.mit.edu/deeptesla

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

End-to-end Steering

• By the end of this lecture, you’ll be able to train a model
that can steer a vehicle

• Our input to our network will be a single image of the

forward roadway from a Tesla

• Our output will be a steering wheel value between -20 and

20

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Creating the Dataset

• We recorded and extracted 10 video clips of highway driving

from a Tesla

• The wheel value was extracted from the in-vehicle CAN

• We cropped/extracted a window from each video frame and

provide a CSV linking the window to a wheel value

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Lighting and Road Conditions

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNetJS Overview

• ConvNetJS is a Javascript

implementation for using

and training neural

networks within the

browser

• It supports simple networks

with several different layer

types and training

algorithms

• Constructing and training a

network can be performed

in very few lines of code,

great for demonstrations

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNetJS – Neural Network Representation

• The network is represented

by a single Javascript object

which contains a list of

layers

• Each layer contains a plain

array of weights (w), the

activation/activation

gradients of the last

forward pass, as well as the

shape and layer type

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Layer Types

• ConvNetJS implements several different layer types:

convolutional, pooling, fully-connected, local contrast

normalization, and loss layers

• There are three available output types: regression, softmax,

and SVM

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNetJS – Training Overview

• To train a network, you first must

initialize a “Trainer” object
• var trainer = new

convnetjs.SGDTrainer(net, {

method: ‘adadelta’, batch_size:

1, l2_decay: 0.0001});

• There are three training algorithms

available: SGD, Adadelta, and

Adagrad.

• Training is performed by manually

calling trainer.train(input_volume,

expected_output)

• Returns an object containing timing

and loss function information

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

DeepTesla Overview

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Model Metrics

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Network Designer

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Training Interaction

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Layer Visualization

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Input Layer

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Convolutional Layer Visualization

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Video Visualization

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Information Bar

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Input Box

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Barcodes

• 17 bit, sign-magnitude

• Encoded into actual video

• 0 = black, 1 = white

• Frame on top, wheel on

bottom (divided by two)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Image Batches

• Each image loaded of the

network contains an entire

batch

• There is one image per row,

and 250 rows in total

• These images are

reassembled into volumes

upon download

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Training Explanation

• One web worker used for loading examples

• Each batch of training images is one large image with each row as a

single training example

• After an image finishes loading asynchronously, sends the training

examples to another worker

• One web worker used for training network

• Train on each image and push the network/outputs to visualization

worker

• One web worker used for visualization

• For a specified training example interval, blit the activation/gradient

output of each training example onto a canvas

• Each web worker behaves as a single thread, and we use

message passing to communicate state between the

workers

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNetJS Evaluation - Video Explanation

• The videos are encoded as 1280x820 in H264/MKV with 17

bit sign-magnitude barcodes

• The video main video frame is stored in the box (0, 1280, 0,

720)

• The frame barcode is in box (1144, 720, 1280, 770)

• The wheel value barcode is in box (1144, 770, 1280, 820)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNetJS Evaluation - Creating the Video

• Each epoch is synchronized to 30 fps

• We extract the wheel value from the CAN data and

synchronize each message to a frame (both the frame and

the CAN message are timestamped)

• Using OpenCV, we process the data

• Generate a bar code for the frame containing the wheel data

• Crop the image portion used for training

• Create single images containing batches of training data

• The epochs and associated data are copied to our web

server which serves

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNetJS Evaluation - Playing the Video

• To be able to use the video in the neural network, we need

to do some preprocessing

• First, we have a hidden video element and rely on modern

HTML5 video implementations

• When the user requests the video to play, we begin tracking

each redraw of the page

• With each redraw, we grab the currently rendered video

frame, extract the RGBA values and blit them to two

different canvases: one canvas, which the user sees, and

another canvas which is hidden and only contains a cropped

portion of the frame (the part we will use for the neural

network)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNetJS Evaluation - Playing the Video

• Next, we read the image data from the hidden canvas and

shape it into a ConvNetJS volume

• For each image we first create a volume:

• var image_vol = new convnetjs.Vol(x_size, y_size, depth,

default_value)

• Next, we extract each pixel from the canvas and set the

equivalent voxel (volume pixel) to the value (skipping the

alpha value)

• We can also extract the expected steer value by parsing the

barcode (a 17 bit, signed-magnitude barcode, where white =

1, black = 0)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

ConvNetJS Evaluation - Forward Pass

• Now we can use our extracted volume in the forward pass

by calling net.forward(our_volume)

• The predicted value is stored in the output neuron:

• var prediction = net.forward(vol);

• var raw_regression_value = prediction.w[0];

• Because we min-max normalized our inputs while training

the network, we need to transform our outputs – this is just

the reverse transformation we performed on input:

• Wheel value = (raw_regression_value * total_wheel_range) –
wheel_min

• We visualize the predicted and actual steering wheel values

and calculate the error

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

End-to-End Driving with ConvnetJS

Tutorial on http://cars.mit.edu/deeptesla

http://cars.mit.edu/deeptesla

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

End-to-End Driving with TensorFlow

Available on http://github.com/lexfridman/deeptesla

http://github.com/lexfridman/deeptesla

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Build the Model: Input and Output

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

def conv2d(x, W, stride):
return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1],

padding='VALID')

x = tf.placeholder(tf.float32, shape=[None, 66, 200, 3])
y_ = tf.placeholder(tf.float32, shape=[None, 1])

x_image = x

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Build the Model: Convolutional Layers

#first convolutional layer
W_conv1 = weight_variable([5, 5, 3, 24])
b_conv1 = bias_variable([24])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1, 2) + b_conv1)

#second convolutional layer
W_conv2 = weight_variable([5, 5, 24, 36])
b_conv2 = bias_variable([36])

h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2, 2) + b_conv2)

#third convolutional layer
W_conv3 = weight_variable([5, 5, 36, 48])
b_conv3 = bias_variable([48])

h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3, 2) + b_conv3)

#fourth convolutional layer
W_conv4 = weight_variable([3, 3, 48, 64])
b_conv4 = bias_variable([64])

h_conv4 = tf.nn.relu(conv2d(h_conv3, W_conv4, 1) + b_conv4)

#fifth convolutional layer
W_conv5 = weight_variable([3, 3, 64, 64])
b_conv5 = bias_variable([64])

h_conv5 = tf.nn.relu(conv2d(h_conv4, W_conv5, 1) + b_conv5)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Build the Model: Fully Connected Layers

fully connected layer 1
W_fc1 = weight_variable([1152, 1164])
b_fc1 = bias_variable([1164])

h_conv5_flat = tf.reshape(h_conv5, [-1, 1152])
h_fc1 = tf.nn.relu(tf.matmul(h_conv5_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

fully connected layer 2
W_fc2 = weight_variable([1164, 100])
b_fc2 = bias_variable([100])

h_fc2 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)

fully connected layer 3
W_fc3 = weight_variable([100, 50])
b_fc3 = bias_variable([50])

h_fc3 = tf.nn.relu(tf.matmul(h_fc2_drop, W_fc3) + b_fc3)

h_fc3_drop = tf.nn.dropout(h_fc3, keep_prob)

fully connected layer 4
W_fc4 = weight_variable([50, 10])
b_fc4 = bias_variable([10])

h_fc4 = tf.nn.relu(tf.matmul(h_fc3_drop, W_fc4) + b_fc4)

h_fc4_drop = tf.nn.dropout(h_fc4, keep_prob)

#Output
W_fc5 = weight_variable([10, 1])
b_fc5 = bias_variable([1])

y = tf.mul(tf.atan(tf.matmul(h_fc4_drop, W_fc5) + b_fc5), 2)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Train the Model

sess = tf.InteractiveSession()

loss = tf.reduce_mean(tf.square(tf.sub(model.y_, model.y)))
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
sess.run(tf.initialize_all_variables())

saver = tf.train.Saver()

for i in range(int(driving_data.num_images * 0.3)):
xs, ys = driving_data.LoadTrainBatch(100)
train_step.run(feed_dict={model.x: xs, model.y_: ys, model.keep_prob: 0.8})
if i % 10 == 0:

xs, ys = driving_data.LoadValBatch(100)
print("step %d, val loss %g"%(i, loss.eval(feed_dict={

model.x:xs, model.y_: ys, model.keep_prob: 1.0})))
if i % 100 == 0:

if not os.path.exists(LOGDIR):
os.makedirs(LOGDIR)

checkpoint_path = os.path.join(LOGDIR, "model.ckpt")
filename = saver.save(sess, checkpoint_path)
print("Model saved in file: %s" % filename)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Run the Model

import tensorflow as tf
import scipy.misc
import model
import cv2

sess = tf.InteractiveSession()
saver = tf.train.Saver()
saver.restore(sess, "save/model.ckpt")

img = cv2.imread('steering_wheel_image.jpg',0)
rows,cols = img.shape

smoothed_angle = 0

cap = cv2.VideoCapture(0)
while(cv2.waitKey(10) != ord('q')):

ret, frame = cap.read()
image = scipy.misc.imresize(frame, [66, 200]) / 255.0
degrees = model.y.eval(feed_dict={model.x: [image], model.keep_prob:

1.0})[0][0] \
* 180 / scipy.pi

cv2.imshow('frame', frame)
smoothed_angle += 0.2 * pow(abs((degrees - smoothed_angle)), 2.0 / 3.0) * \

(degrees - smoothed_angle) / abs(degrees - smoothed_angle)
M = cv2.getRotationMatrix2D((cols/2,rows/2),-smoothed_angle,1)
dst = cv2.warpAffine(img,M,(cols,rows))
cv2.imshow("steering wheel", dst)

cap.release()
cv2.destroyAllWindows()

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

End-to-End Driving with TensorFlow

Available on http://github.com/lexfridman/deeptesla

http://github.com/lexfridman/deeptesla

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

TrafficLight Classification with TensorFlow

We will be implementing a simple traffic light classifier, with 3 classes (red, green, yellow)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Parameters

• Max epochs: the number of

times the neural network

will see all training

examples

• Input_img_x/y: the size we

will use for inputs into the

the network

• Batch size: # of examples

the neural network will see

before making a gradient

step

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Helper Functions

We use some helper functions to make adding layers

easier/more consistent

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Model Input/Output

• We specify our input and output types in the same lines to

make sure they agree with our idea of the network

• Our input is an image of sized 32x32x3 (RGB channels)

• Our output consists of 3 neurons, representing the

probability of each class

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Convolutional Layer

• Here we specify our first convolutional layer using our helper

function

• W_conv1 – a 4D tensor representing the weights [filter_x,

filter_y, previous layer neurons, # of filters]

• b_conv1 – our simple addition variable

• h_conv1 – our actual layer/activation

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Pooling Layer

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Flattening Pool Layer

We calculate the total number of neurons needed in our first fully-connected

layer by multiplying all the dimensions of the pool layer shape

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Output Layer

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Loss and Optimizer

• Our loss function performs softmax and then computes

cross-entropy

• We use the AdamOptimizer and specify a learning rate

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Saver Object

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Loading Images

• Iterate over each image, resize to 32x32

• Create a one hot encoding of our class

• Shuffle the entire dataset

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Splitting the Dataset

• Split our data set into train and test

• We truncate our sets to a multiple of batch size (all batches

have to be the same size)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Training Loop

• Iterate over each batch and train on it

• (we assume training examples are a multiple of the batch size)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Best Model

• We evaluate the loss on all of our training examples and test

examples

• If the validation loss is lower than the lowest loss, we save our

model

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

Expected Output

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

TrafficLight Classification with TensorFlow

We will be implementing a simple traffic light classifier, with 3 classes (red, green, yellow)

Lex Fridman:

fridman@mit.edu

Website:

cars.mit.edu

January

2017

Course 6.S094:

Deep Learning for Self-Driving Cars

References

All references cited in this presentation are listed in the

following Google Sheets file:

https://goo.gl/9Xhp2t

https://goo.gl/9Xhp2t

