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Administrative

Website: cars.mit.edu

Contact Email: deepcars@mit.edu

deep learning
for self-driving cars

Required:
* Create an account on the website.
* Follow the tutorial for each of the 2 projects.

Recommended:
* Ask questions

cars.mit.edu

* Win competition!

Office hours: Friday, 5-7pm
(more info coming soon)
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Administrative

Website: cars.mit.edu

Contact Email: deepcars@mit.edu

Required:
* Create an account on the website.
* Follow the tutorial for each of the 2 projects.

Recommended:
* Ask questions
* Win competition!
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Schedule

Mon, Jan 9 Introduction to Deep Learning and Self Driving Cars

Learning to Move: Reinforcement Learning for Motion Planning

Tue, Jan 10
DeepTraffic: Solving Traffic with Deep Reinforcement Learning

Learning to Drive: End-to-End Learning for the Full Driving Task
Wed, Jan 11

DeepTesla: End-to-End Learning from Human and Autopilot Driving

Thu, Jan 12 | Karl lagnemma: From Research to Reality: Testing Self-Driving Cars on Boston Public Roads

Fri, Jan 13 John Leonard: Mapping, Localization, and the Challenge of Autonomous Driving

Tue, Jan 17 Chris Gerdes: TBD

Wed, Jan 18 | Sertac Karaman: Past, Present, and Future of Motion Planning in a Complex World

Thu, Jan 19 | Learning to Share: Driver State Sensing and Shared Autonomy

Eric Daimler: The Future of Artificial Intelligence Research and Development
Fri, Jan 20

Learning to Think: The Road Ahead for Human-Centered Atrtificial Intelligence
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DeepTraffic Leaderboard

’ ﬁ Rank User MPH
.-

1 cmauckio 72.67
Z Jeffrey Li 72.45
3 Ted Grunberg 72.31
4 Xiaoxue Wang 72.31
5 Ethan Weber 71.73
6 Indra den Bakker 71.35
7 Kavya R. 71.24
™ =
n 8 Rakesh 71.21
1-1
9 LCMartin 71.02

-
<

)
5
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Illustrative Case Study: Traffic Light Detection
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DeepTesla: End-to-End Learning from Human and Autopilot Driving
(in ConvnetlS)

Predicted wheel: -2.5
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DeepTesla: End-to-End Learning from Human and Autopilot Driving
(in TensorFlow)

| Tesla Control Learned Control 6
\m;;!.;' (by Autopilot) {(by Deep Neural Network) ) ! | . !
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Computer Vision is Machine Learning
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Computer Vision
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Images are Numbers
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What the computer sees

B O

82% cat
15% dog
2% hat

1% mug

image classification

* Regression: The output variable takes continuous values

 Classification: The output variable takes class labels

* Underneath it may still produce continuous values such as
probability of belonging to a particular class.
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Computer Vision is Hard

Scale variation Occlusion

Viewpoint variation Deformation

.
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Image Classification Pipeline
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Famous Computer Vision Datasets
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MNIST: handwritten digits

airplane ﬁ.a’ » ..:&—-
automobile EE@E““.‘

ImageNet: WordNet hierarchy
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Places: natural scenes

CIFAR- 10(0) tiny images
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Let’s Build an Image Classifier for CIFAR-10
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Let’s Build an Image Classifier for CIFAR-10

test image training image pixel-wise absolute value differences
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Accuracy

Random: 10%

Our image-diff (with L1): 38.6%
Our image-diff (with L2): 35.4%

s e 8
72 - BT RIRIEN R
Sl I i S R
g -ﬁﬂﬂﬂﬁEEE
e e
N e e
- el LT EE
S Lo B g~
- *

mmm  Massachusetts Course 6.5094: Lex Fridman: Website: Januar
||||| Insttute of References: [89, 91] 5 : i : : :

‘echnology eep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



K-Nearest Neighbors: Generalizi

the data

°
° ° e °
oo © .. d G o - 'n.a 3
o o6 ° A *
® [ & o ° °o.~°.° o
® o .. o ‘ ° °.n°o °:'
” °® a :..
oo = o’Q.
°
* °
° ] =
[ °
° .. : \.. O. ® ° .
1 o 50 o
3% .
. ° » ” ° Py
‘w

NN classifier

ng the Image-Diff Classifier

5-NN classifier

1, P

Cross-validation on k

T . h . 032
uning (hyper)parameters:
031
A A 030
[ | am T - A
- g o
- [ ] gox
‘.
’ <
' £ 028
I -]
. " . \‘ §
= . } g 027
' i
! 026
025
T 0 0 ) @ & 100 120
K
I  — :\"as_saChU:eﬁs f . Course 6.5094: Lex Fridman: Website: January
II nstitute o Re erences: [89] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017

Technology



K-Nearest Neighbors: Generalizing the Image-Diff Classifier

train data

test data

v

fold 1

fold 2

fold 3

fold 4

fold 5

test data

100 120

Accuracy
Random: 10%

Training and testing on the same data: 35.4%

7-Nearest Neighbors: ~30%
Human: ~94%

Convolutional Neural Networks: ~95%

Course 6.5094:

Deep Learning for Self-Driving Cars

Lex Fridman: Website:
fridman@mit.edu
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Reminder: Weighing the Evidence
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Reminder: Classify and Image of a Number

(28x28)
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Reminder: “Learning” is Optimization of a Function

forward pass

\

log probabilities

block of differentiable compute

image (e.g. neural net)

-1.2 | -0.36
gradients
1.0 0

A

backward pass

Ground truth for “6”:

y(x) = (0,0,0,0,0,0,1,0,0,0)%

“Loss” function:

Clw,b) = 5" ly(z) - al?

b
R

Supervised Learning
(correct label is provided)

-2 =
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Technology

References: [63, 80]
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Convolutional Neural Networks

Regular neural network (fully connected):

input layer
hidden layer 1 hidden layer 2

Convolutional neural network:

L IC OC T T 2
OO

OOO00K:
QOQO0] ~
QOOOOV width

Each layer takes a 3d volume, produces 3d volume with some
smooth function that may or may not have parameters.
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Convolutional Neural Networks: Layers

* INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and
with three color channels R,G,B.

* CONYV layer will compute the output of neurons that are connected to local regions in the input, each computing
a dot product between their weights and a small region they are connected to in the input volume. This may
result in volume such as [32x32x12] if we decided to use 12 filters.

* RELU layer will apply an elementwise activation function, such as the max(0,x) thresholding at zero. This leaves
the size of the volume unchanged ([32x32x12]).

* POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in
volume such as [16x16x12].

* FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of
the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary
Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the
previous volume.

RELU RELU RELU RELU RELU RELU
CONV [CONV CONV CONVl CONVlCONVl

v

Eblane
§hip

horse

AT T TR TR RN —

v
=
=
B
B
-
=
=
=

I - - Inassachusetts Ref . 195 Course 6.5094: Lex Fridman: Website: January
Techln‘(‘)lugy ererences: [ ] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



Dealing with Images: Local Connectivity

32 Zy Wy

*@ synapse
axon from a neuron

@* slelelel )

Z w;z; +b
- output axon

activation
function

32

Same neuron. Just more focused (narrow “receptive field”).

The parameters on a each filter are spatially “shared”
(if a feature is useful in one place, it’s useful elsewhere)
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ConvNets: Spatial Arrangement of Output Volume

3

32

IF

32

0O000®

* Depth: number of filters

e Stride: filter step size (when we “slide” it)

* Padding: zero-pad the input

I Hmm Massachusetts
I I Institute of
Technology
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ConvNets: Pooling

Single depth slice

A
" 11112 |4
max pool with 2x2 filters
5|6 |7 8 and stride 2 6 | 8
>
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Computer Vision:
Object Recognition / Classification

(.'; S| C: S: n n;
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feature extraction

\\ connected A
classification

mite contamer shi motor scooter
mite container srlp motor scooter legpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
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“tabby cat”
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convolut 1011a1ization

Computer Vision:
Segmentation

tabby cat heatmap

© o0
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Original Ground Truth FCN-8

I - - Inassachusetts Ref - 196 Course 6.5094: Lex Fridman: Website: January
Techlnl(lglogy ererences: [ ] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



Computer Vision:
Object Detection

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
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N B Massachusetts

How Can Convolutional Neural Networks Help Us Drive?

Institute of

Technology

Tesla Control

{by Autopilot)

Learned Control
{by Deep Neural Network)

Steering Angle
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Driving: The Numbers

(in United States, in 2014)

Miles Fatalities

e All drivers: 10,658 miles * Fatal crashes: 29,989
(29.2 miles per day) + Al fatalities: 32,675

* Car occupants: 12,507

* SUV occupants: 8,320

* Pedestrians: 4,884

* Motorcycle: 4,295

* Bicyclists: 720

* Rural drivers: 12,264 miles

* Urban drivers: 9,709 miles

e Large trucks: 587

I | “ t 1 Course 6.5094: Lex Fridman: Website: Januar
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Cars We Drive

Market Share Of America's 20 Best-Selling Vehicles

4.6%

March 2016

59.9%

m Ford F-Series

® Chevrolet Silverado
Ram P/U

¥ Toyota Camry

M Nissan Altima
Honda Civic
Toyota Corolla

= Honda Accord
Ford Fusion

¥ Toyota RAV4

¥ Hyundai Sonata

B Ford Escape

® Nissan Rogue
Honda CR-V

m Nissan Sentra
Ford Explorer
Chevrolet Malibu
GMC Sierra
Chevrolet Equinox

u Jeep Cherokee

m Other 240+ Models

Hmm Massachusetts
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Human at the Center of Automation:
The Way to Full Autonomy Includes the Human

Fully
Machine
Controlled

Fully
Human
Controlled

Ford F150 Tesla Model S Google Self:Driving Car,
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Human at the Center of Automation:
The Way to Full Autonomy Includes the Human

Emergency

* Automatic emergency breaking (AEB)

Warnings

* Lane departure warning (LDW)
* Forward collision warning (FCW)

* Blind spot detection

Longitudinal

* Adaptive cruise control (ACC)

Lateral
* Lane keep assist (LKA)
* Automatic steering

Control and Planning
* Automatic lane change
* Automatic parking

Levels of driving automation [NHTSA]

> Regulatory change required?

1
1
= T
= Driver in complete and Driver can regain control Driver is tempoarily I Driver must be available Driver not expected to
5 sole control at all times or stop faster than if relieved of these driving to take over controls take control at any time
\, driving without the functions
special function I Vehicle is designed to
perform all safety-
I critical driving functions
and monitor road
Enablesall safety- conditions for an
I critical functions to be entire trip
I slee::;):?\ar:)etgglcrlake] (Includes both occupied
i 7 " § and unoccupied
lnvol\:es au;on?atmn of The vehicle monitors any vehicles?
at eas:fuprlrlnary I changes in conditions
cur:‘tdru mnctons that require a transition
Involves 1 or more bt L) back to driver control
A specific control (eg. ac.iaptlve arse I
[ah) functi control in combination
a) unohons with lane centring)
Q N 5 (eg. stability control, I
ﬁ LOhE I pre-charged brakes)
= ]
Level O: Level 1: Level 2: | Level 3: Level 4:
No Automation Function-specific  Combined Function ! Limited Self-Driving Full Self-Driving
Automation Automation I Automation Automation
2013+ .

Source: NHTSA (Modified)

Tesla Autopilot

Hmm Massachusetts
Institute of
Technology
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Distracted Humans

What is distracted driving?

Texting

Using a smartphone
Eating and drinking
Talking to passengers
Grooming

Reading, including maps
Using a navigation system
Watching a video
Adjusting a radio

* Injuries and fatalities:

3,179 people were killed and 431,000 were

injured in motor vehicle crashes involving

distracted drivers

(in 2014)

* Texts:

169.3 billion text messages were sent in the
US every month.

(as of December 2014)

* Eye off road:
5 seconds is the average time your eyes are

off the road while texting. When traveling
at 55mph, that's enough time to cover the

length of a football field blindfolded.
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4 D’s of Being Human:
Drunk, Drugged, Distracted, Drowsy

* Drunk Driving: In 2014, 31 percent of traffic fatalities
involved a drunk driver.

* Drugged Driving: 23% of night-time drivers tested positive
for illegal, prescription or over-the-counter medications.

 Distracted Driving: In 2014, 3,179 people (10 percent of
overall traffic fatalities) were killed in crashes involving
distracted drivers.

* Drowsy Driving: In 2014, nearly three percent of all traffic
fatalities involved a drowsy driver, and at least 846 people
were killed in crashes involving a drowsy driver.
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In Context: Traffic Fatalities

Total miles driven in U.S. in 2014:
3,000,000,000,000 (3 million million)

Tesla Autopilot miles driven since October 2015:

300,000,000 (300 million)
(as of December 2016)
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In Context: Traffic Fatalities

Total miles driven in U.S. in 2014:
3,000,000,000,000 (3 million million)
Fatalities: 32,675
(1in 90 million)

Tesla Autopilot miles driven since October 2015:

300,000,000 (300 million)
Fatalities: 1
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In Context: Traffic Fatalities

We (increasingly) understand this ~ Fatalities: 32,675
(1 in 90 million)
We do not understand this (yet) » Fatalities: 1

We need A LOT of real-world semi-autonomous driving data!

Computer Vision + Machine Learning + Big Data = Understanding
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The Data

Teslas instrumented: 17
Hours of data: 5,000+ hours

Distance traveled: 70,000+ miles

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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The Data

Total Time Driving: O mins

Autopilot Available: 0 mins
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Camera and Lens Selection

58

Logitech

Logitech C920: Fisheye: Capture full range of head, body
On-board H264 Compression movement inside vehicle.

Case for C-Mount Lens: 2.8-12mm Focal Length: “Zoom” on the face
Flexibility in lens selection without obstructing the driver’s view.
I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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Semi-Autonomous Vehicle Components

Interior Camera/ Smart Camera Rear—

Front View Driver Monitoring Remote Park Assist
Camera Systemn Park Assist/Self-Parking

Night Vislon/Surround
View Camera

Side Impact
Emergency Brake : mé’t
System and Adaptive

Cruise Control

External

Radar

Visible-light camera
LIDAR

Infrared camera
Stereo vision
GPS/IMU

CAN

© N O U A~ W NP

. Audio

Internal

1. Visible-light camera

Cross Traffic ag B L AN :
Assit 403, s Bind Spot Detection 2. Infrared camera
- - | \ Surround View
3. Audio
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Self-Driving Car Tasks

Localization and Mapping:
Where am I?

Scene Understanding:
Where is everyone else?

Movement Planning:
How do | get from A to B?

Driver State:
What's the driver up to?
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Self-Driving Car Tasks

* Localization and Mapping:
Where am I?
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Visual Odometry

* 6-DOF: freed of movement
* Changes in position:
* Forward/backward: surge
* Left/right: sway
* Up/down: heave
* QOrientation:
* Pitch, Yaw, Roll

* Source:
e Monocular: | moved 1 unit

e Stereo: | moved 1 meter

* Mono = Stereo for far away objects

e PS: For tiny robots everything is “far away” relative to inter-camera
distance
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SLAM: Simultaneous Localization and Mapping
What works: SIFT and optical flow
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Visual Odometry in Parts

* (Stereo) Undistortion, Rectification

(Stereo) Disparity Map Computation
Feature Detection (e.g., SIFT, FAST)

Feature Tracking (e.g., KLT: Kanade-Lucas-Tomasi)

Trajectory Estimation
* Use rigid parts of the scene (requires outlier/inlier detection)

* For mono, need more info* like camera orientation and height of
off the ground

* Kitt, Bernd Manfred, et al. "Monocular visual odometry using a planar road model to solve scale ambiguity." (2011).
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End-to-End Visual Odometry

Left video sequence Right video sequence
& 0 Stereo camera
16 16
5 frames T 90 T 920 l
uoo% H 5 frame
T 90 P sub-sequence

convolution, stride=5

i 15 ; 15
256"\
-._..Elementwise product:,‘ 15
: ' CNN CNN
(Velocity) (Direction)
15

canvolution, stride=1

+ pooling [2,2]

5, Local velocity Local change

in direction
5
Fully connected layer
512 )
Path

Softmax (Velocity/Direction)

Konda, Kishore, and Roland Memisevic. "Learning visual odometry with a convolutional
network." International Conference on Computer Vision Theory and Applications. 2015.
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Self-Driving Car Tasks

* Scene Understanding:
Where is everyone else?
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Object Detection

» Past approaches: cascades classifiers (Haar-like features)

* Where deep learning can help:
recognition, classification, detection
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Full Driving Scene Segmentation

|Sign Symbol

g
Eelce

\Vehicle

Fully Convolutional Network implementation:
https://github.com/tkuanlun350/Tensorflow-SegNet
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https://github.com/tkuanlun350/Tensorflow-SegNet

Road Texture and Condition from Audio

(with Recurrent Neural Networks)

g
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2
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0) : 4 ’ 3 = 2 . " < 5 - N o ol e
Current Tume Offset (secs) Current Time Offset (secs)
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Self-Driving Car Tasks

* Movement Planning:
How do | get from A to B?
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* Previous approaches: optimization-based control

 Where deep learning can help: reinforcement learning

Deep Reinforcement Learning implementation:
https://github.com/nivwusquorum/tensorflow-deepq
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https://github.com/nivwusquorum/tensorflow-deepq

* Driver state:

Self-Driving Car Tasks

What's the driver up to?
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Drive State Detection:

A Multi-Resolutional View

Increasing level of detection resolution and difficulty

Body Head Blink Blink Eye
Pose Pose Rate Duration Pose
Gaze )
e . Drowsiness
Classification

Frames: 1

Time: 0.03 secs

Total Confident Decisions: 1

Correct Confident Decisions: 1

\(\o?

Accuracy: 1007

Frames: 1 Accuracy: 100%

Time: 0.03 secs
Total Confident Decisions: 1

Correct Confident Decisions:

Blink Pupil Micro
Dynamics Diameter Saccades
Cognitive

Load
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Gaze Region and Autopilot State

Latest gaze classification

L LT
e =

It il Ed rrsa s it
1) '.-'_' :- Ve (‘“ :'” Autopilot Status:
" N
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Driver Emotion

Class 1: Satisfied with Voice-Based Interaction

brow furrow
ichin raiser
disgust (image)

Gender:iMale
Glasaas:iNo
nterocular distan

Meon Foce luminance ieyes ¢l d
v Piteh ang L iinner brow raise
. Rell ang Jlip depressor
Yow/ angle: dlip press
] lip pucker
dip raiser
ilip suck

mouth open
inose wrinkle
‘outer brow raise
:smile

(preasivensas: left)

right)

Class 2: with Voice-Based Interaction

Gender: Male 'D: O - A.
Glosses: Yea 3 . .

Interoculor distonce: 164.8
Mean Face luminance: 140.5 .
Piteh angle: 7.4

Roll angle: =5.

Yaw angle: —8.0

IHII.)FYZ

sadnesa:
Surprise:

irk (right)

xpreasiveneas:
L -
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If Driving is a Conversation, this is an

End-to-End Natural Language Generation

1. Natural language processing to enable
it to communicate successfully
. 2. Knowledge representation to store
— information provided before or during

A B the interrogation
) 3. Automated reasoning to use the stored
@ = ] information to answer questions and to
o draw new conclusions

Turing Test:
Can a computer be mistaken for a §
human more than 30% of the time?
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Autonomous Driving: End-to-End

Magic
Happens
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Testing Dataset

Training Dataset
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Autonomous Driving: End-to-End

End to End Learning for Self-Driving Cars

Mariusz Bojarski
NVIDIA Corporation
Holmdel, NJ 07735

Beat Flepp
NVIDIA Corporation
Holmdel, NJ 07735

Urs Muller
NVIDIA Corporation
Holmdel, NJ 07735

Davide Del Testa
NVIDIA Corporation
Holmdel, NJ 07735

Prasoon Goyal
NVIDIA Corporation
Holmdel, NJ 07735

Jiakai Zhang
NVIDIA Corporation
Holmdel, NJ 07735

Daniel Dworakowski
NVIDIA Corporation
Holmdel, NJ 07735

Bernhard Firner
NVIDIA Corporation
Holmdel, NJ 07735

Lawrence D. Jackel
NVIDIA Corporation
Holmdel, NJ 07735

Mathew Monfort
NVIDIA Corporation
Holmdel, NJ 07735

Xin Zhang
NVIDIA Corporation
Holmdel, NJ 07735

Jake Zhao
NVIDIA Corporation
Holmdel, NJ 07735

Karol Zieba
NVIDIA Corporation
Holmdel, NJ 07735
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Autonomous Driving: End-to-End

Output: vehicle control
!
Fully-connected layer
[ S0neuons ] Fully-connected layer
Fully-connected layer
Flatten

Convolutional
feature map
64@1x18

3x3 kernel

ik

= _ Convolutional
> feature map
e 64@3x20
/ A9 kel Convolutional
= s = feature map
oz 48@5x22

5x5 kernel

Convolutional
feature map
36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200
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Autonomous Driving: End-to-End

[ 10neurons ]
[ 50neurons ]

| 100 neurons |

: Flatten :
i: 3x3 kernel

//3x3 kernel

%emel

AS kernel
/‘Sx5 kernel

_—

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200

* 9 layers
* 1 normalization layer
* 5 convolutional layers
* 3 fully connected layers

* 27 million connections

250 thousand parameters

I Hmm Massachusetts
I I Institute of
Technology
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End-to-End Driving with ConvnetJS

Tutorial on http://cars.mit.edu/deeptesla
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http://cars.mit.edu/deeptesla

End-to-end Steering

* By the end of this lecture, you’ll be able to train a model
that can steer a vehicle

* Our input to our network will be a single image of the
forward roadway from a Tesla

* Our output will be a steering wheel value between -20 and
20

P o ook o P,

sachusetts Course 6.5094: Lex Fridman: Website: January
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Creating the Dataset

* We recorded and extracted 10 video clips of highway driving
from a Tesla

* The wheel value was extracted from the in-vehicle CAN

* We cropped/extracted a window from each video frame and
provide a CSV linking the window to a wheel value
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Lighting and Road Conditions
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ConvNetlJS Overview

ConvNetlS is a Javascript
implementation for using
and training neural
networks within the
browser

Instantiate a Network and Trainer

It supports simple networks ==

Network Visualization

with several different layer — maee., ... 15
types and training o

conv (32x32x16) Activations

pa rameters: 16x5x5x3+16 = 1216

: .
algorithms e om... 1
ax gradient: 0.00863. min: -0.01137 I’
4

Constructing and training a
network can be performed
in very few lines of code,
great for demonstrations
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ConvNetJS — Neural Network Representation

. ¥ layers: Array[1@]
* The network is represented ve: b
. . . > in_act: Object
by a single Javascript object
which contains a list of el T
layers N
. . P : Object
* Each layer contains a plain >1: d
array of weights (w), the i
activation/activation e
gradients of the last >6: e
forward pass, as well as the >5: b
shape and layer type el
Ur-'i_‘ _v‘.,:i': l’:é €5510!
P out_act: a
IIIII -:-:,‘ﬁg; EZ::JSfezrsr?i:z:forSeIf—Driving Cars If-SZnI:ﬁ!:r(gan:i:t.edu \c,\a/,rest.):[i(te.:edu Jzi)nll;ary



Layer Types

e ConvNetlS implements several different layer types:
convolutional, pooling, fully-connected, local contrast
normalization, and loss layers

* There are three available output types: regression, softmax,
and SVM

ki
2 "network” : [
] { "type" : "input”, "out_sx" : 200, "out_sy" : 66, "out_depth" : 3 },
4 { "type" : "conv", "sx" : 3, "filters" : 8, "stride" : 1, "pad" : 2, "activation" : "relu" },
5 { "type” : "pool™; "sx" :.2; "stride” : 2:},
6 { "type" : "conv", "sx" 3, "filters" 8, "stride" : 1, "pad" : 2, "activation” : "relu” },
7 { "type" "pool”, "sx" 2, "stride" : 2 },
8 { "type” conv,. UsxT =3, “filters!' : 8§, "stride’ - 1. "pad™ : 2, “activation® - "relu” ¥,
) { "type" “pool’,. "sx” 3. . Tstride™= 3 %
) { "type” "regression”, "num_neurons” S
12 "trainer" : { "method” : "adadelta", "batch_size" : 4, "12_decay” : ©.2001 }
I BB Massachusetts Course 6.5094: Lex Fridman: Website: January
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ConvNetlS — Training Overview

To train a network, you first must Ve
initialize a “Trainer” object batch_size: 1
. eps: ©.009e0l1
e var trainer = new BT -
. . b gsum: Array[@]
convnetjs.SGDTrainer(net, { :
method: ‘adadelta’, batch_size: T
1, 12_decay: 0.0001}); 12 _decay: @
. : learning_rate: 8.01
There are three training algorithms S :
available: SGD, Adadelta, and S e
Adagrad. b net: Object
Training is performed by manually 0: .35
calling trainer.train(input_volume, >-sum: APEayia]
I : Object
expected_output) e
Returns an object containing timing
and loss function information
IIIII _:_2253‘1%’536 gz::asfezrsr?i:‘;:for Self-Driving Cars If-SZrireizigan:i:t.edu \c,\:rest.):[iizedu Jzi)nll;ary



DeepTesla Overview

DeepTesla - End-to-End Steering Model

Forward pass (ms): 1" Backward pass (ms): 14
Total examples seen / unique: 1999 Network Status training
o6
190,
i
5
s .
78,3 g P Y
pris [ \t“v \»-_,\,
pvey =
e N
s
ok oskogkosk 08k ik 1k ek Lok 15k &
14
2 “network” : [
3 = "input", "out_ : 66, "out_depth® : 3},
4 G "conv™, "sx" : , “"stride" : 2, "pad” : 2, "activation” : “relu” },
5 Fy , "stride” : 2, "pad” , "activation® : "relu” },
6 : By "stride” : 2, "pad” : 2, "activation™ : "relu” },
7 £
8 S i
9 .
“trainer" : { "method" : "adadelta", "batch_size" : 4, "12_decay" : 0.0001 }
1}
RESTART TRAINING VIDEO VISUALIZATION

Layer Visualization

Input (200x66x3)
Activations (actual angle: -0.5, predicted angie: -1.4)

(101x34x8). Bx3x3x348 = 224

Weights hidden, too small
filter size 3x3x3, stride 2

RelU (101x34x8)
Activations
I
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Model Metrics

1308 63

ok o4k 08k 1.2k 16k 2k 24k 28k 3.2k 36k 4k

Forward pass (ms): 7 Backward pass (ms): 9
Total examples seen / unique: 2827 Network Status training
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Network Designer

RESTART TRAINING

1 {

2 "network" : [

3 { "type" : "input", "out_sx" : 200, "out_sy" : 66, "out_depth" : 3 },

4 { "type" "conv”®; "sx'" 3, "filters” i :8; "stride™ : 2, "pad® 2, "activation® : "relu” },
5 { "type" "conv®, "sx¥ 3, °filters" i '8, "stride™ : 2, "pad™ 2, "activation"': "relu™ },
6 £type™ : “conv", “sx™ i3, "Tilters" : 8, “stride™ : 2, "pad"::. 2, Tactivation™ : "relu™ },
7 { “type” "pool™; Msx™. 3 Tstride® i 3i);

8 { "type" "regression”, "num_neurons" : 1 }

9 1.
10 "trainer" : { "method" : "adadelta", "batch_size" : 4, "12_decay" : 0.0001 }

11 }

VIDEO VISUALIZATION

I Hmm Massachusetts
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Technology
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Training Interaction

RESTART TRAINING VIDEO VISUALIZATION
I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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Layer Visualization

Layer Visualization

Input (200x66x3)
Activations (sctual engle: 2.5, predicted snghs: -2.0)

c (109x34x8), paramsters: Bx3x3+8 = 224
Activations

Weights hidden, too small
fiter 526 3x3x3, atride 2

RelU (101x34x8)
Acsivations

Convolutional (52x18x8). paramaters: Bx2x3x858 = 534

Weights hidden, too small
filier 2o 3x3x8, sride 2

RelU (52x18x6)
Acsivations

Convolutional (27x10x8). paramaters: 8x3x3x5+8 = 534
Acfivations

Weichts hidden. oo small
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Input Layer

Input (200x66x3)
Activations (actual angle: 1.0, predicted angle: 1.5)

3
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Convolutional Layer Visualization

Convolutional (101x34x8), parameters: 8x3x3x3+8 = 224
Activations

Weights hidden, too small
filter size 3x3x3, stride 2

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
II Technology Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



Video Visualization

Predicted wh

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
I I Techlnl(l)logy Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



Information Bar

Predicted wheel: -2.0
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Input Box
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Barcodes

17 bit, sign-magnitude

Encoded into actual video
0 = black, 1 = white

Frame on top, wheel on
bottom (divided by two)
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Image Batches

* Each image loaded of the
network contains an entire
batch

* There is one image per row,
and 250 rows in total

* These images are
reassembled into volumes
upon download

I I I B Massachusetts Course 6.5094: Lex Fridman: Website: January
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Training Explanation

One web worker used for loading examples

* Each batch of training images is one large image with each row as a
single training example

» After an image finishes loading asynchronously, sends the training
examples to another worker

One web worker used for training network

* Train on each image and push the network/outputs to visualization
worker

* One web worker used for visualization

* For a specified training example interval, blit the activation/gradient
output of each training example onto a canvas

Each web worker behaves as a single thread, and we use
message passing to communicate state between the
workers
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ConvNetlS Evaluation - Video Explanation

* The videos are encoded as 1280x820 in H264/MKV with 17
bit sign-magnitude barcodes

* The video main video frame is stored in the box (0, 1280, O,
720)

* The frame barcode is in box (1144, 720, 1280, 770)
* The wheel value barcode is in box (1144, 770, 1280, 820)
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ConvNetlS Evaluation - Creating the Video

Each epoch is synchronized to 30 fps

We extract the wheel value from the CAN data and
synchronize each message to a frame (both the frame and
the CAN message are timestamped)

* Using OpenCV, we process the data
* Generate a bar code for the frame containing the wheel data
* Crop the image portion used for training
* Create single images containing batches of training data

The epochs and associated data are copied to our web
server which serves
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ConvNetlJS Evaluation - Playing the Video

* To be able to use the video in the neural network, we need
to do some preprocessing

* First, we have a hidden video element and rely on modern
HTMLS video implementations

* When the user requests the video to play, we begin tracking
each redraw of the page

* With each redraw, we grab the currently rendered video
frame, extract the RGBA values and blit them to two
different canvases: one canvas, which the user sees, and
another canvas which is hidden and only contains a cropped
portion of the frame (the part we will use for the neural
network)
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ConvNetlJS Evaluation - Playing the Video

* Next, we read the image data from the hidden canvas and
shape it into a ConvNetJS volume

* For each image we first create a volume:

* var image_vol = new convnetjs.Vol(x_size, y_size, depth,
default_value)

* Next, we extract each pixel from the canvas and set the
equivalent voxel (volume pixel) to the value (skipping the
alpha value)

* We can also extract the expected steer value by parsing the
barcode (a 17 bit, sighed-magnitude barcode, where white =
1, black = 0)
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ConvNetJS Evaluation - Forward Pass

Now we can use our extracted volume in the forward pass
by calling net.forward(our_volume)

The predicted value is stored in the output neuron:
 var prediction = net.forward(vol);
e var raw_regression_value = prediction.w[0];

Because we min-max normalized our inputs while training
the network, we need to transform our outputs — this is just
the reverse transformation we performed on input:

* Wheel value = (raw_regression_value * total _wheel range) —
wheel_min

We visualize the predicted and actual steering wheel values
and calculate the error
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End-to-End Driving with ConvnetJS

Tutorial on http://cars.mit.edu/deeptesla
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http://cars.mit.edu/deeptesla

End-to-End Driving with TensorFlow

Tesla Control Learned Control
{by Autopilot) {by Deep Neural Network)

Steering Angle
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Build the Model: Input and Output

3x3 kernel

//3x3 kernel

5x5 kernel

AS kernel

%xs kernel

;; = ggi

[ Normalization ]
|

_

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200

def weight variable (shape) :
initial = tf.truncated normal (shape, stddev=0.1)
return tf.Variable (initial)

def bias variable (shape) :
initial = tf.constant (0.1, shape=shape)
return tf.Variable (initial)

def conv2d(x, W, stride):
return tf.nn.conv2d(x, W, strides=[1l, stride, stride, 1],

padding='VALID')

x = tf.placeholder (tf.float32, shape=[None, 66, 200, 31)
y_ = tf.placeholder (tf.float32, shape=[None, 1])

X image = x
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Build the Model: Convolutional Layers

#first convolutional layer

CI) e W convl = weight variable([5, 5, 3, 24])
| 10 neurons ] Fully-connected layer b convl = bias variable([24])
[ 50neurons | Fully-connected layer
L 100 neurons | Fully-connected layer h convl = tf.nn.relu(conv2d(x_image, W _convl, 2) b convl)
Flatten #second convolutional layer
Convolutional W _conv2 = weight variable([5, 5, 24, 36])
gia(t@ljgergap b conv2 = bias variable ([36])
% _ _
33 kernel Convolutional h conv2 = tf.nn.relu(conv2d(h convl, W conv2, 2) b conv2)
feature map
64@3x20
e #third convolutional layer
/‘/3”‘3'(9"‘9' Convolutional W _conv3 = weight variable([5, 5, 36, 48])
feature map b conv3 = bias variable([48])
48@5x22 - -
5x5 kernel e h conv3 = tf.nn.relu(conv2d(h conv2, W conv3, 2) b _conv3)
feature map
36@14x47 #fourth convolutional layer
W conv4d = weight variable([3, 3, 48, 64])
AS kernel Convolutional b 4 = bi gRE_ve bl 64 Y ’
feature map _conv4 = bias variable([64])
24@31x98
h convd = tf.nn.relu(conv2d(h conv3, W conv4, 1) b convid)
%xs kernel Normalized - - "= ’ -
; = f input planes , ,
3@66x200 #fifth convolutional layer
[ Normalizaton | W _conv5 = weight variable([3, 3, 64, 64])
| b conv5 = bias variable([64])
Input planes
H 3@66x200
e h convb = tf.nn.relu(conv2d(h conv4, W _conv5, 1) b conv)b)
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Build the Model: Fully Connected Layers

# fully connected layer 1
W fcl = weight variable([1152, 1164])
b fcl = bias variable([1164])

h conv5 flat = tf.reshape(h conv5, [-1, 1152])

CI) Output: vehicle control h fcl = tf.nn.relu(tf.matmul (h_conv5 flat, W fcl) + b_fcl)
[ 10 neurons ] Fully-connected layer
[ 50meuons Eiillissnnaciad Taver keep prob = tf.placeholder(tf.float32)
y Y h fcl drop = tf.nn.dropout(h fcl, keep prob)
| 100 neurons ] Fully-connected layer - - - -
# fully connected layer 2
Flatten W fc2 = weight variable([1164, 100])
Convolutional b fc2 = bias variable([100])
feature map - -
64@1x16 h fc2 = tf.nn.relu(tf.matmul (h fcl drop, W fc2) + b fc2)
3x3 kernel ; - - - - -
Convolutional
feature map h fc2 drop = tf.nn.dropout (h fc2, keep prob)
64@3x20 o o - B
//3)(3 kernel ) # fully connected layer 3
— Convolutional W_fc3 = weight variable([100, 507)

feature ma . :
# 10@5x22 b_fc3 = bias_variable ([50])

9x5 kernel h fc3 = tf.nn.relu(tf.matmul (h fc2 drop, W fc3) + b fc3)

Convolutional
feature map
36@14x47 h fc3 drop = tf.nn.dropout (h _fc3, keep prob)

AS L Convolutional # fully connected layer 4

fziaé’g‘j;‘;gp W fc4 = weight variable([50, 10])
b fc4 = bias variable([10])

%X5 kernel Normalized

; P f input planes h fcd = tf.nn.relu(tf.matmul (h fc3 drop, W fc4) + b fc4)
3@66x200

[ Normalization | h fc4 drop = tf.nn.dropout(h fc4, keep prob)
|

Input planes #Output
H 3@66x200 W_fc5 = weight_variable([10, 1])

b fc5 = bias variable([1])

y = tf.mul (tf.atan(tf.matmul (h fcd4d drop, W fc5) + b fc5), 2)
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Train the Model

sess = tf.InteractiveSession()
loss = tf.reduce mean(tf.square(tf.sub(model.y , model.y)))
train step = tf.train.AdamOptimizer (le-4) .minimize (loss)

sess.run(tf.initialize all variables())
saver = tf.train.Saver ()

for 1 in range(int(driving data.num images * 0.3)):
xs, ys = driving data.LoadTrainBatch (100)
train step.run(feed dict={model.x: xs, model.y : ys, model.keep prob: 0.8})
if 1 % 10 ==
xs, ys = driving data.LoadValBatch (100)
print ("step %d, val loss %g"% (i, loss.eval (feed dict={
model.x:xs, model.y : ys, model.keep prob: 1.0})))
if 1 $ 100 ==
if not os.path.exists (LOGDIR) :
os.makedirs (LOGDIR)
checkpoint path = os.path.join(LOGDIR, "model.ckpt")
filename = saver.save (sess, checkpoint path)

Q

print ("Model saved in file: %s" % filename)
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Run the Model

import tensorflow as tf
import scipy.misc
import model

import cv2

sess
save
save

img
rows

= tf.InteractiveSession ()
r = tf.train.Saver ()
r.restore (sess, "save/model.ckpt")

= cv2.imread ('steering wheel image.jpg',0)
,cols = img.shape

smoothed angle = 0

cap = cv2.VideoCapture (0)
while (cv2.waitKey (10) != ord('q'")):

ret, frame = cap.read()

image = scipy.misc.imresize (frame, [66, 200]) / 255.0

degrees = model.y.eval (feed dict={model.x: [image], model.keep prob:
1.0}) [0][0] N\

cap.
cv2.

* 180 / scipy.pi
cv2.imshow ('frame', frame)
smoothed angle += 0.2 * pow(abs((degrees - smoothed angle)), 2.0 / 3.0) * \

(degrees - smoothed angle) / abs(degrees - smoothed angle)
M = cv2.getRotationMatrix2D((cols/2,rows/2),-smoothed angle, 1)
dst = cv2.warpAffine(img,M, (cols, rows))

cv2.imshow ("steering wheel", dst)

release ()
destroyAllWindows ()
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End-to-End Driving with TensorFlow

Tesla Control Learned Control
{by Autopilot) {by Deep Neural Network)

Steering Angle
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TrafficLight Classification with TensorFlow

f.\ §

We will be implementing a simple traffic light classifier, with 3 classes (red, green, yellow)
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Parameters

* Max epochs: the number of
times the neural network
will see all training
examples

* Input_img_x/y: the size we
will use for inputs into the
the network

* Batch size: # of examples
the neural network will see
before making a gradient
step
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Helper Functions

W, stride
F.nn.conv2d(x, 2 ' [1, stride, stride, , paddings=

X

max_poo

], padding=

We use some helper functions to make adding layers
easier/more consistent
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Model Input/Output

x = tf.placeholder(tf.float32, shape=]| , input_img x, input_img vy,

= tf.placeholder(tf.float32, shape=| , Len(image_types) ]

* We specify our input and output types in the same lines to
make sure they agree with our idea of the network

e Our input is an image of sized 32x32x3 (RGB channels)

* Our output consists of 3 neurons, representing the
probability of each class
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Convolutional Layer

weight variable e 37

- 3 - " - T ~
— bgab_\/ol Lable

tf.nn.relu(conv2d(x_1image, W_convil,

Here we specify our first convolutional layer using our helper
function

W _convl — a 4D tensor representing the weights [filter_x,
filter vy, previous layer neurons, # of filters]

* b_convl —our simple addition variable
* h_convl — our actual layer/activation
IIIiI- Egﬁi‘}:{g’zem gzz:)sfezrsr?iizzfor Self-Driving Cars If-SZrireia(rj\nC;)an:i:t.edu \cl\a:fst?iﬁf.:edu Jzi)nll;ary



Pooling Layer
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Flattening Pool Layer

} = h_pool4.get_sh

weight_variable

; AEPHR
bias variable

n2*n3*n4

We calculate the total number of neurons needed in our first fully-connected
layer by multiplying all the dimensions of the pool layer shape
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Output Layer

tf.matmul(h poold4 flat,
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Loss and Optimizer

s = tf.reduce mean(tf.nn.softmax _cross_entropy with logits(y, y_

, = tf.train.AdamOptimizer -4).minimize( loss
sess.run(tf.initialize_all_variables

* Our loss function performs softmax and then computes
cross-entropy

* We use the AdamOptimizer and specify a learning rate
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Saver Object
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Loading Images

- im_type in image types:
- ex in glob.glob(os.path.join(base_image_path, im_type,
= cv2.imread(ex
P -ZL frl . .

o | = N ~ -
= cv2.resize(im,

- * len(image_types
\y[image_ types.index(im_type

~t(im.shape ==

full_set.append((im, one_hot _array)

random.shuffle(full _set

* |terate over each image, resize to 32x32
* Create a one hot encoding of our class

e Shuffle the entire dataset
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Splitting the Dataset

t(math.floor full_set) * train_test split _ratio

[ :split_index]

 Split our data set into train and test

* We truncate our sets to a multiple of batch size (all batches
have to be the same size)
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Training Loop

: train_x) / batch_size
= batch_size * tt
= batch_size * (tt +
_step.run(feed_dict={x: train_x[start_batch:end batch], y_: train_y[start_batch:end_batch

= . tt * batch_size,
.Stdout.write(ex_seen. t(tt * batch_size
.stdout. flush

e |terate over each batch and train on it

* (we assume training examples are a multiple of the batch size)
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Best Model

loss.eval(feed_dict={x: train_x,

loss.eval(feed_dict={x: test x, y_

sys.stdout.write R t(1 , t loss, v _loss

if v_loss < least _loss:
sys.stdout.write . f t(checkpoint _name
' = v_loss

me = saver.save(sess, checkpoint_name

* We evaluate the loss on all of our training examples and test
examples

 |f the validation loss is lower than the lowest loss, we save our
model
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Expected Output

ow/stream_executor/dso

GeForce GTX 980 Ti
5 minor: 2 memoryClockRate (GHz)
pciBusID 0000:02:00.0
Total memory: 6.00GiB
Free memory: 5.52G1iB

.cc:
tensorflow/stream_executor/dso_loader.
tensorflow/stream_executor/dso_loader.
tensorflow/stream_executor/dso_loader.
tensorflow/stream_executor/dso_loader.

cc:
cc:
cc:
cc:

1.076

successTtulLly opened

I tensorflow/core/common_runtime/gpu/gpu_1init.cc:126] DMA: ©
I tensorflow/core/common_runtime/gpu/gpu_1init.cc:136] 0: Y

I tensorflow/core/common_runtime/gpu/gpu_device.cc:838] Creating TensorFlow device (/gpu:
orce GTX 980 Ti, pci bus id: 0000:02:00.

0)

Starting training... [1312 training examples]

: loss: 3.4614486694, val.
H .8578453064, val.
.2075960636, val.
.7959808707, val.
.5186702609, val.
.3895130754, val.
.2840102911, val.
.2281106114, val.
.1889465898, val.
.1507862508, val.
.1126181334, val.
.0972050354, val.
.0831822604, val.
.0760012567, val.
.0637019351, val.
.0536490902, val.
.0512478650, val.
.0333782099, val.
.0367136374, val.
.0175283104, val.
.0203501396, val.
.0372636504, val.
.0096475044, val.
.0095629999, val.
.0072135003, val.

loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:

oo oNoNoNoNoNoNoNoNoNoNoRoNoNoNoNoNoRoRNoRo RN

loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:
loss:

[cNocNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo R N

.1707162857, saving
.8420848846, saving
.1884875298, saving
.8523907661, saving
.8251042366, saving
.7883402705, saving
.8282299042
.7970542312
.8308163881
.8214046359
.7745668888, saving
.7550495267, saving
.7207581401, saving
.7217628956
.7158752084, saving
.7022477984, saving
.6906370521, saving
.6657178402, saving
.6645810008, saving
.6335256100, saving
.6400516629
.6770884395
.5926443338, saving
.5750324726, saving
.5805844069

ibrary
successfully opened library
successfully opened library
successfully opened library
] successfully opened library

best
best
best
best
best
best

libcudnn.so locally
libcufft.so locally
libcuda.so.1 locally
libcurand.so locally
tensorflow/core/common_runtime/gpu/gpu_1init.cc:102] Found device 0 with properties:

model
model
model
model
model
model

to
to
to
to
to
to

(device: 0, n

.ckpt
.ckpt
.ckpt
.ckpt
.ckpt
.ckpt
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TrafficLight Classification with TensorFlow

f.\ §

We will be implementing a simple traffic light classifier, with 3 classes (red, green, yellow)
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References

All references cited in this presentation are listed in the
following Google Sheets file:

https://g00.g1/9Xhp2t
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